
Remaining Useful Life Estimation for Predictive Maintenance

Applications
Authors: Jyosna Philip, Abhay Sharma, Muthukumar Ganesan, Anchal Sekhri,

Khunwana Zeno, Sana Zehra

Objective:

Predictive maintenance, aimed at predicting when equipment will fail and scheduling

timely maintenance to prevent unexpected breakdowns, has emerged as a critical field in

various industries. The estimation of Remaining Useful Life (RUL) of machinery and equipment

is at the forefront of this domain, leveraging advanced data analytics and machine learning

techniques to foresee equipment failure and optimize maintenance schedules. Remaining

Useful Life (RUL) of a component or a system is defined as the length from the current time

to the end of the useful life. Accurate RUL estimation plays a critical role in Prognostics and

Health Management (PHM). Data driven approaches for RUL estimation use sensor data and

operational data to estimate RUL.

Introduction:

Industrial systems, ranging from small machines to Jet engines, rely on maintenance

for their durability. In recent years, companies have started to invest in techniques that can

prevent faults in advance. One such technique is Preventive Maintenance [1]. Remaining

Useful Life (RUL) of a component or a system is defined as the length from the current time

to the end of the useful life [2]. The criteria to define whether the component or system is

still usable is already known to the domain experts of the component or system. In industry

operational research, there is an interest in modeling methods for RUL estimation given

component or system condition and health monitoring information. Prognostic technologies

are very crucial in condition based maintenance for diverse application areas, such as

manufacturing, aerospace, automotive, heavy industry, power generation, and

transportation. While accessing the degradation from expected operating conditions,

prognostic technologies estimate the future performance of a subsystem or a component to

make RUL estimation. If we can accurately predict when an engine will fail, then we can make

informed maintenance decision in advance to avoid disasters, reduce the maintenance cost,

as well as streamline operational activities. This works proposes a data driven approach to

predict RUL of a complex system when the run-to-failure data is available.

In this work, we propose a comprehensive methodology to analyze the open-source dataset

of NASA's Turbofan Jet Engine for predicting Remaining Useful Life (RUL). The project

encompasses a series of steps including Exploratory Data Analysis (EDA), Feature Engineering

(FE), and the application of multiple machine learning algorithms to develop a robust

predictive model. The objective is to provide an in-depth understanding and a high-

performing model that can accurately forecast the RUL of jet engines, thereby facilitating

predictive maintenance.

Data Preparation:

Data set consists of multiple multivariate time series. The data set is further divided

into training and test subsets. Each time series is from a different engine i.e., the data can be

considered to be from a fleet of engines of the same type. Each engine starts with different

degrees of initial wear and manufacturing variation which is unknown to the user. This wear

and variation is considered normal, i.e., it is not considered a fault condition. The data is

contaminated with sensor noise. The engine is operating normally at the start of each time

series, and develops a fault at some point during the series. In the training set, the fault grows

in magnitude until system failure. In the test set, the time series ends some time prior to

system failure. The objective of the competition is to predict the number of remaining

operational cycles before failure in the test set, i.e., the number of operational cycles after

the last cycle that the engine will continue to operate. Also provided a vector of true

Remaining Useful Life (RUL) values for the test data.

CMAPSS Dataset: The data contains 26 columns of numbers, where each row is a snapshot

of data taken during a single operational cycle. The columns corresponds to Engine ID, Time

in Cycles, Setting1, Setting2, Setting3 and remaining all are sensor data.

Target RUL: The target variable is not explicitly provided in the dataset; therefore, it is
inherently calculated by subtracting the number of cycles from the maximum cycle for the
corresponding engine. This results in the creation of a new column labelled "Remaining
Cycles," which represents the Remaining Useful Life (RUL) of the engine. The health of a
system degrades linearly along with time. In practical applications, degradation of a
component is negligible at the beginning of use, and increases when component approaches
end-of-Life. To better model the Remaining Useful Life changes along with time, in [3] [4], a
piece-wise linear RUL target function was proposed, as in Figure below, which limits the
maximum RUL to a constant value and then start linear degradation after a certain degree
of usage. We set the maximum limit as 130 time cycles for all the engines.

Fig. Piece-wise RUL of the Data Set (Piece-wise maximum RUL is 130 time cycles)

Exploratory Data Analysis:

The data distribution of each variable in the dataset varies significantly. The setting

variables and sensor variables include constant, discrete, and continuous data types. As per

figure, some sensors, such as sensor4, sensor5, and sensor6, exhibit constant values. In

contrast, sensors such as Sensor1, Sensor2, and Sensor3 show a normal distribution. The

remaining sensors display skewed distributions, either to the right or left. This diverse range

of data distributions necessitates tailored pre-processing techniques to ensure optimal model

performance.

Fig. Frequency Distribution Plot for Sensor Data

Parallel Plots (also known as Parallel Coordinate Plots) [11] are a type of data

visualization used to explore and analyse multi-dimensional data. This technique is

particularly effective for understanding the relationships between multiple variables and for

identifying patterns, clusters, and outliers in high-dimensional datasets. In the NASA Aircraft

Engine dataset, a parallel plot was utilized shown in the below figure, where each vertical axis

represents a different sensor, and each line corresponds to an observation in the dataset.

Dark blue lines represent observations with higher remaining cycles, while yellow lines

indicate lower remaining cycles.

Fig. Parallel Coordinates plot for CMAPSS Dataset

In the initial cycles, indicated by dark blue lines, the sensor readings tend to be more

consistent and clustered together, signifying stable operation. As the engines approach mid-

life, sensor readings start to diverge, reflecting variations in performance and the emergence

of faults. Nearing the end of life, shown by yellow lines, the sensor readings show significant

divergence, indicating wear and degradation. Some sensors exhibit considerable variations,

highlighting their importance in predicting the remaining useful life of the engines, while

others show minimal variation, suggesting they might be less critical for this task.

Occasionally, lines deviate significantly from the general pattern, indicating potential

anomalies or sudden faults.

Data Pre-processing:

Some features are constant in the dataset, and thus, their variance is zero. All zero

variance variables are removed before the training stage because they do not contain useful

information for machine learning.

A) Data Filtering: The sensor data in the dataset are noisy and sporadic, necessitating the

application of smoothing filters to improve data quality. Two widely used smoothing

techniques, Simple Moving Average (SMA) and Exponential Moving Average (EMA), were

applied with various weights to determine the most effective method. Upon evaluation, EMA

with an alpha value of 0.1 visually outperformed other configurations. Consequently, EMA

with this alpha value was selected and applied to the sensor data, resulting in a smoother and

more reliable data.

Fig. Comparison between Raw sensor data and exponential moving averaged sensor data

B) Data Scaling: Since the value range is substantially different in different variables, it can

be difficult to find the optimal point for the cost function. Therefore, the training and testing

datasets need to be normalized. There are two widely used methods for normalization, which

are Z-scores (Equation (1)) and min-max-scale (Equation (2)). Both methods are applied, and

the one with the best evaluation result is selected.

Principal Component Analysis:

As part of feature engineering, Principal Component Analysis (PCA) is applied to

visualize and understand the high-dimensional sensor data. PCA is a widely used

dimensionality reduction technique that transforms the data by projecting it onto a set of

orthogonal axes. This method works by identifying the eigenvectors and eigenvalues of the

covariance matrix of the dataset. The eigenvectors, known as the "Principal Components,"

represent the directions of maximum variance in the data. By projecting the data onto these

principal components, PCA reduces the dimensionality while retaining the most significant

features, facilitating better visualization and analysis of the complex sensor data.

Explained Variance Ratio: The number of components needed can be determined by looking

at the cumulative explained variance ratio as a function of the number of components as

shown in the below graph.

Fig. Explained Variance Ratio of Principal Components

This curve quantifies how much of the total, the high dimensional variance is

contained within the first N components. For example, we see that the first two components

contain approximately 70% of the variance, while we need 12 components to describe close

to 100% of the variance. Which means we can reduce our data dimension to 24 from 12

without much loss of the data.

Fig. First 3 principal components are plotted

The first, second, and third principal components are studied extensively as they

represent 75% of the dataset's variance. The above figure represents the scatter plot for the

complete dataset, where green dots represent the starting points of the engine cycles, and

orange dots represent the failure points. It becomes evident from the scatter plot that

thresholding the first principal component can effectively determine the failure point of all

engines, irrespective of the other principal components.

Feature Selection:

From the plots shown in the figure below, it is evident that the first principal

component can be segregated to indicate failure, which helps the model in tuning the

remaining useful life (RUL). Therefore, the first principal component is included as an

additional feature for model development. This inclusion enhances the model's ability to

predict RUL more accurately by leveraging the significant variance captured by the first

principal component.

Fig Principal Components Vs Cycles

Fig. Heatmap of the features in CMAPSS dataset

From the heat map it is evident that lot of features are highly correlated and it can

lead to multi collinearity problem. Multicollinearity refers to the situation where two or

more features in a dataset are highly correlated, which can negatively impact the

performance of machine learning models. In the presence of multicollinearity, the model

coefficients can become unstable, leading to high variance and unreliable predictions.

Therefore, it is crucial to select features that contribute the most to the model's

performance while minimizing redundancy. To tackle the issue of multicollinearity and

ensure the selection of the most relevant features, we applied the Select K Best algorithm.

This algorithm ranks all the features according to a specified statistical criterion and selects

the top K features that are most significant for predicting the target variable. From the

below graph it is evident that Sensor1 and Sensor2 are less significant and hence, it can be

removed.

Fig. Features ranked based on Scores by Select K Best Algorithm

Model Selection:

According to our literature survey, Remaining Useful Life (RUL) prediction performs

particularly well using neural network-based deep learning algorithms. To identify a highly

robust model in terms of performance, we compared the results of several machine learning

and deep learning models in our work. These models include Linear Regression, Random

Forest Regression, eXtreme Gradient Boosting (XGBoost), Multilayer Perceptron (MLP), Long

Short-Term Memory (LSTM) networks, and a hybrid model combining Convolutional Neural

Networks (CNN) with LSTM. This comprehensive comparison allows us to evaluate each

model's effectiveness in predicting RUL and select the best-performing approach for our

predictive maintenance application

Linear Regression Model: Linear regression assumes a linear relationship between the

independent variables (predictors) and the dependent variable (response). It serves as a

fundamental building block in many statistical and machine learning techniques. Linear

regression is applied on the data and the performance is evaluated based on RMSE and R2

scores for various hyperparameters. Additionally, to reduce overfitting, L1 and L2

regularisation are applied.

Random Forest Model: Random Forest Regressor is an ensemble learning method used for

regression tasks. It is an extension of the Random Forest algorithm [6], which is originally

designed for classification. In regression, the goal is to predict a continuous target variable.

The Random Forest Regressor constructs a large number of decision trees during training,

each tree trained on a random subset of the data. The final prediction for a new sample is

obtained by averaging the predictions from all individual trees in the forest. This helps reduce

overfitting by creating trees that are different from each other.

The following hyperparameters were explored using grid search, and the best estimator was

selected based on the mean squared error (MSE)

Hyperparameter Description List of Values Best Estimator

n_estimators No. of Trees [100,200,300] 300

max_depth Maximum depth of trees [6,8,10,12,14] 6

min_samples_leaf Minimum of samples for leaf [4,6,8,10] 4

ccp_alpha Tree pruning factor [0,1,2] 0

XGBoost Model: XGBoost Regressor is a powerful and efficient implementation of the

gradient boosting algorithm specifically designed for regression tasks. XGBoost (extreme

Gradient Boosting) [7] is an ensemble of decision trees sequentially. Each new tree corrects

the errors made by the previous trees, effectively reducing bias and variance. XGBoost is

designed for efficiency, utilizing advanced optimization techniques and parallel processing to

handle large datasets and complex tasks quickly. It also incorporates [8] both L1 (Lasso) and

L2 (Ridge) regularization in its objective function to prevent overfitting and improve

generalization. While also using maximum depth features, ensuring trees grow only as deep

as necessary to prevent overfitting and improve computational efficiency.

The following hyperparameters were explored using grid search, and the best estimator was

selected based on the mean squared error (MSE)

Hyperparameter Description List of Values Best Estimator
learning_rate Learning Rate [0.05,0.1,0.2] 0.1

n_estimators No. of Trees [70,100,200,300] 70

max_depth Maximum depth of trees [3,4,5] 3

min_child_weight Minimum sum of instance
weights

[70,100,150,200] 200

Multi-Layer Perceptron Model: A Multilayer Perceptron Regressor (MLPRegressor) is a type

of artificial neural network used for regression tasks. Unlike traditional linear regression

models, MLPRegressor can capture complex, non-linear relationships in the data, making it a

powerful tool for many regression problems. An MLP consists of an input layer [10], one or

more hidden layers, and an output layer. Each layer contains a certain number of neurons,

which are the basic units in each layer that apply a weighted sum of inputs followed by an

activation function.

MLPRegressor trains iteratively since at each time step the partial derivatives of the

loss function with respect to the model parameters are computed to update the parameters

[9]. The MLP Regressor showed no overfitting in the initial stage of experimentation. But

when the training and testing values were clipped at 130, it overfits. However, the testing

accuracy was still higher than all the previous models.

Fig. Multilayer Perceptron Flow Diagram

The MLP model underwent fine-tuning, where various combinations of hidden layer

sizes were tested across different solvers. After evaluation, the optimal estimator was

determined based on specific parameter configurations.

LSTM Model: Long Short-Term Memory Network (LSTM) [5] is a type of RNN network for
sequence learning tasks and has achieved great success on speech recognition and machine
translation. LSTM does not have long-term time dependency problems by controlling
information flow using input gate, forget gate and output gate. Remembering information
for long periods of time is practically their default behaviour. Due to inherent sequential
nature of sensor data, LSTMs are well-suited for RUL estimation using sensor data. In this
work, we propose a LSTM based approach for RUL estimation, which uses multiple layers of
LSTM cells in combination with standard feed forward layers to discover hidden patterns
from sensor and operational data with multiple operating conditions, fault and degradation
models.
LSTM cell structure at time t is shown in Figure 2 [5]. We differentiate output of LSTM cell
and cell state denoted as h (t) and c (t), respectively. Vector size of the output and cell state
is the same and it is defined by number of nodes in the cell. This LSTM cell also takes sensor
data x (t) as an input. There are three gates that control the information flow within cell:
(1) Input gate it controls what information based on output h (t-1) and sensor
measurements x (t) will be passed to memory cell,
(2) Output gate controls what information will be carried to the next time step, and
(3) Forget gate controls how memory cell will be updated as shown in the below Figure.

There are many variants of LSTMs and experimentation on this is part of our future
work. For example, the nonlinear sigmoid and hyperbolic tangent activation function can be
replaced using other activation functions. One can also choose to use the cell state c (t-1) as
an extra input into the three gates. Connection between different layers of LSTMs in Figure
2 is achieved such that the output of one layer is as an input to the next layer. Sensor
measurements are input only to the first LSTM layer.

Fig. LSTM Cell

LSTM works only on time series data, hence the dataset is split into multiple fixed length time

series data of length 30 and applied to the model.

CNN + LSTM: The combination of Convolutional Neural Networks (CNN) and Long Short-Term

Memory (LSTM) networks has gained significant attention in the field of time series

forecasting and sequence modeling. This hybrid architecture leverages the strengths of both

CNNs and LSTMs to capture spatial patterns and long-term dependencies in sequential data.

The CNN module processes the input data (e.g., time series sequences) and extracts relevant

spatial features through convolutional layers. These layers employ filters to capture local

patterns within the input sequences, enabling the model to learn hierarchical representations

of the data. The LSTM module receives the output from the CNN module and processes it

sequentially to capture long-term dependencies and temporal patterns. The LSTM layers

maintain an internal state that allows them to remember information over extended time

periods, making them well-suited for modeling sequential data.

Model Evaluation:

In order to evaluate the performance of a RUL estimation model on the test data, Root Mean

Square Error (RMSE) (Equation 2), gives equal penalty weights to the model when the

estimated RUL is smaller than true RUL and when the estimated RUL is larger than true RUL

and R2 Score (Equation 1), which is also widely used as an evaluation metric for the estimation

of RUL.

All the models are evaluated based on RMSE and R2 score on the test dataset and the results

are shown in the table below.

Model Test RMSE Test R2 Score
Linear Regression 43.18 0.46

Random Forest 6.68 0.42

XG Boost 17.35 0.65
Multilayer Perceptron 4.51 0.52

LSTM 15.93 0.75

CNN + LSTM 13.34 0.86

Flask Application:

A web application is created using Flask module with the following 2 pages.

Pages:

Main Page: As shown in Fig1, the page contains a button labeled "Predict RUL". Upon

clicking this button, the application loads an inbuilt test set, performs data transformation,

scaling, and executes multiple predictive maintenance models.

Results Page: As shown in Fig2, After the successful execution of all models, the

application redirects to the results page. This page displays bar plots for each model's

predictions.

Functionality:

Predict RUL Button: When clicked, this button triggers the execution of the predictive

maintenance models.

Data Transformation and Scaling: Before model execution, the application

preprocesses the data by transforming and scaling it appropriately for each model.

Model Execution: The application executes multiple predictive maintenance models,

including LSTM, XGBoost, MLP, and CNN with LSTM.

Bar Plot Visualization: Once all models have been executed successfully, the application

generates bar plots for each model's predictions on the results page.

Workflow:

 User navigates to the main page of the web application.

 User clicks the "Predict RUL" button.

 The application loads the inbuilt test set and preprocesses the data.

 Multiple predictive maintenance models (LSTM, XGBoost, MLP, CNN with LSTM) are

executed.

 After successful execution, the application redirects to the results page.

 On the results page, bar plots for each model's predictions are displayed.

Fig1. Main Page

Fig2. Results Page

Conclusion:

The project encompassed the entire lifecycle of predictive maintenance, starting with data

collection from various sources, followed by comprehensive data preparation and

preprocessing stages to ensure data quality and consistency. Feature scaling, Principal

Component Analysis (PCA), and feature selection techniques were applied to refine the

dataset and identify the most relevant features for modeling. Multiple predictive

maintenance models, including LSTM, XGBoost, MLP, and CNN with LSTM, were developed

and evaluated using appropriate metrics. Finally, a user-friendly web application was

developed using Flask, providing an intuitive interface for users to interact with the models.

From data input to model execution and result visualization, the application seamlessly

facilitated predictive maintenance tasks, empowering maintenance professionals to optimize

equipment uptime and reduce downtime costs effectively.

References:

[1] S. Duffuaa, M. Ben-Daya, K. Al-Sultan, and A. Andijani, “A generic conceptual simulation

model for maintenance systems,” Journal of Quality in Maintenance Engineering, vol. 7, pp.

207–219, 09 2001.

[2] X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou, “Remaining useful life estimation–a review on

the statistical data driven approaches,” European Journal of Operational Research, vol. 213,

no. 1, pp. 1–14, 2011

[3] Heimes, F.O.: Recurrent neural networks for remaining useful life estimation. In:

International Conference on Prognostics and Health Management, 2008. PHM 2008.

[4] G. S. Babu, P. Zhao, and X.-L. Li, “Deep convolutional neural network based regression

approach for estimation of remaining useful life,” in International Conference on Database

Systems for Advanced Applications. Springer, 2016, pp. 214–228

[5] Shuai Zheng, Kosta Ristovski, Ahmed Farahat and Chetan Gupta, “Long Short-Term

Memory Network for Remaining Useful Life Estimation,” in IEEE International Conference on

Prognostics and Health Management (ICPHM), 2017

[6] Breiman, L. (2001). "Random Forests." Machine Learning, 45(1), 5-32.

[7] Chen, T., & Guestrin, C. (2016). "XGBoost: A Scalable Tree Boosting System." In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining.

[8] XGBoost Documentation

[9] Scikit-learn Documentation: MLPRegressor.

[10] S. Abirami and P. Chitra, "The Digital Twin Paradigm for Smarter Systems and

Environments: The Industry Use Cases," in Advances in Computers,2020.

[11] Wegman, E. J. (1990). "Hyperdimensional Data Analysis Using Parallel Coordinates,"

Journal of the American Statistical Association, vol. 85.

